The Connection Patterns of Two Complete Binary Trees

نویسندگان

  • Fan Chung Graham
  • F. K. Hwang
چکیده

We consider the class of channel graphs which can be viewed as compositions of two copies, right and left, of a complete binary tree with terminal nodes of the right tree connected to distinct terminal nodes of the left tree. We study the connection patterns of the two binary trees to minimize the blocking probability of the resulting channel graphs. We show that the connection patterns given by Ikeno are not optimal in general and in fact no optimal connection patterns exist for such graphs with more than 9 stages. We present new connection patterns which uniquely possess certain optimal properties. 1. Introduction. We consider the class of graphs which consist of two copies, right and left, of a complete binary tree with terminal nodes of the right tree connected to distinct terminal nodes of the left tree. If the complete binary trees have n levels and 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

A New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity

Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...

متن کامل

Convexity, Non–Crossing Tree Partitions and Independent Sets in Phylogenetic Trees

Non –crossing set partitions are counted by the Catalan numbers and have been extensively studied in mathematics. We introduce the concept of a non-crossing tree partition and then use generating functions to count the number non-crossing tree partitions in Ordered and Binary Phylogenetic trees. In addition, we explore the connection between convexity, tree partitions and independent sets. Last...

متن کامل

Profile and Height of Random Binary Search Trees

The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.

متن کامل

Optimal Dynamic Edge-Disjoint Embeddings of Complete Binary Trees into Hypercubes

The double-rooted complete binary tree is a complete binary tree where the path (of length ) between the children of the root is replaced by a path of length . It is folklore that the double-rooted complete binary tree is a spanning tree of the hypercube of the same size. Unfortunately, the usual construction of an embedding of a double-rooted complete binary tree into the hypercube does not pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1980